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Abstract My aim in this paper is to investigate the notions of comparative similarity defin-
able in the framework of branching space-times. A notion of this kind is required to give a
rigorous Lewis-style semantics of space-time counterfactuals. In turn, the semantical analy-
sis is needed to decide whether the recently proposed proofs of the non-locality of quantum
mechanics are correct. From among the three notions of comparative similarity I select two
which appear equally good as far as their intuitiveness and algebraic properties are con-
cerned. However, the relations are not transitive, and thus cannot be used in the semantics
proposed by Lewis (J. Philos. Log. 2:418–446, 1973), which requires transitivity. Yet they
are adequate for the account of Lewis (J. Philos. Log. 10:217–234, 1981).
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1 Introduction

Bell-type theorems rely on counterfactual reasoning that refers to space-like separated
events. To give an example:

Suppose that, as a matter of fact, the measurement of Lα on the left and the measure-
ment of Rβ on the right were performed, with the result Lα+ on the left. Then, if
the same measurement on the left, Lα, and a different measurement on the right, Rγ ,
were performed, the result Lα+ would still occur.

Since such counterfactuals refer to space-like separated events, they are called space-time
counterfactuals. For the record we note that some space-time counterfactuals of Bell-type
theorems refer to probabilities as well, yet this particular variety will not concern us here.
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The issue of the validity of space-time (non-probabilistic) counterfactuals has an impor-
tant consequence for the foundational debate of quantum mechanics. It has been alleged
that, given that some space-time counterfactuals are correct, it can be proved that quantum
mechanics is nonlocal—see [11]. One could hope that Lewis’s now standard analysis of
counterfactuals should resolve the problem. To recall, this analysis postulates a set of possi-
ble situations (possible worlds), with the relation of accessibility, and ordered by yet another
relation, that of comparative similarity. It further assumes that any sentence of a given lan-
guage is either true or false in any possible world. Calling a world in which sentence ψ

is true a ψ -world, the truth condition for the ‘would’ counterfactual conditional, �→, as
proposed in [5] is:

ψ �→ ϕ is true at the world w iff some (accessible) ψ ∧ ϕ-world is closer to w than
any ψ ∧ ¬ϕ-world, if there are any (accessible) ψ -worlds.

For any world σ , comparative similarity (or comparative closeness, as the quote may sug-
gest) should yield a non-strict ordering �σ , where η �σ γ means that γ is not more similar
to σ than η, or that η is at least as similar to σ as γ . That is, non-strict and strict relations
of comparative similarity are related by: η �σ γ = ¬(γ �σ η). Lewis [5] requires that �σ

be a weak ordering, i.e., that �σ be transitive and connected, where the latter condition is
satisfied if for any η and γ : η �σ γ or γ �σ η. The transitivity and connectivity of �σ

are crucial in this standard account of counterfactuals. Given the above truth condition for
counterfactuals, a non-transitive frame of possible worlds will render the following form of
reasoning invalid, although this form is intuitively correct:

α �→ β

α∧β �→ γ

α �→ γ

(1)

An example is provided by the non-transitive frame consisting of four possible worlds
u,x, y, and z such that x �u y, y �u z, and z �u x, where x is an (α ∧ β ∧ γ )-world, y is
an (α ∧ β ∧ ¬γ )-world, z is an (α ∧ ¬β ∧ ¬γ )-world, and u is an (¬α ∧ ¬β ∧ ¬γ )-world.

As it stands, Lewis’s analysis can hardly yield a verdict about the validity of space-time
counterfactuals because of the vagueness of its concept of comparative similarity. My aim is
to stick to Lewis’s analysis of counterfactuals, while supplementing it with a precise concept
of comparative similarity. I implement Lewis’s analysis rather than develop rival theories
proposed in the quantum context [3, 12, 13], since I believe that Lewis’s account properly
captures most of our everyday argumentation involving counterfactuals. In other words, the
forms of counterfactual reasoning standardly taken for valid are delivered as valid in Lewis’s
analysis, and the forms of counterfactual reasoning standardly taken for invalid are delivered
as invalid in Lewis’s analysis.

To introduce the required notion of comparative similarity, I will use the framework of
stochastic outcomes in branching space-times (SOBST), as developed in [4, 9]. The inspi-
ration for these models came from branching space-time of [1] and outcomes in branching
time of [2]. In the section that follows I will sketch the SOBST framework, giving it a geo-
metrical twist rather than the usual purely algebraic one. Then, in the next section, I will
introduce comparative similarity of histories.
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2 A Geometrical Approach to Branching

Our point of departure is the intuition that possibility is a relative concept, as the phrases:
‘one event make another event possible’ or ‘given that one event occurs, some other event is
possible’ suggest. This at least is the notion of possibility that our quantum speak seems to
require. We say, for instance, that + and − are two alternative possible results of a measure-
ment event, meaning that if, in fact, the measurement event occurs, one of two alternative
continuations of it, one with the + result or the other with the − result, is to follow. A natural
model of a measurement with a few possible continuations consists of two possible histories
sharing a common initial segment with the measurement event, but differing in their future
parts, as one contains the + result, and the other the − result.1

The construction will proceed in two stages. First, we will build a branching structure
by pasting together some Minkowski space-times or some space-times of general relativity.
Since clearly a collection of space-times falls short of being a representation of possible
histories, in the second stage we need to assign states to regions of a branching structure.
The resulting object, a branching structure together with states assigned, is to represent a
collection of possible histories.

As a way of conveying our intuition, consider how a chancy process taking place at
a single point—let us call it, a choice point—and with two possible outcomes, is to be
represented in the Minkowski space-times. Consider for example a point-like particle hitting
a translucent medium, with two possible outcomes: the particle being transmitted or the
particle being reflected. We take two Minkowski space-times, stipulate that a point in one
and a point in the other represent the coordinates of our choice point, and then paste the two
space-times at these two points and ‘below’ them, while keeping the space-times ‘above’ the
(pasted) points separate. This brings in a distinction between the choice points, i.e., points
active in bringing about chancy events, and surfaces of divergence, which account for the
way a chancy process affected at some point(s) propagates globally. It is the shape of the
surfaces of divergence that we need to know in order to determine how space-times are
pasted.

Now, if two Minkowski space-times split at a single choice point x, two things are in-
tuitively clear: all points in the backward light cone of x are shared by the space-times
involved and no point in the forward light cone of x is shared by the two space-times (see
the left part of Fig. 1). But what about the ‘wings’, that is, the totality of points that are nei-
ther in the forward nor in the backward light cones of x? Here I fully endorse an argument
of Belnap [1, pp. 411–414] to the effect that the wings are shared by the two space-times.
To repeat Belnap’s argument, suppose that two points y and z, each belonging to a different
space-time, are located in the ‘wings’ of a choice point x, at which a space-time contain-
ing x and a space-time containing y split. An ‘agent’ responsible for y and z being in two
alternatives should be located in the backward light cone of y and in the backward light
cone of z. For there should be a causal answer to a question like ‘although z occurred, why
could its alternative y have happened?’ However, as far as our story goes, the only agent
responsible for the split is the point x, which is outside the backward light cone of y and
outside the backward light cone of z. Hence, y and z must be in the shared region of the two
space-times.

Before we investigate branching produced by more than a single choice point, let us
consider how choice points of two space-times should be located. Indeed, some experiments,

1The idea that possible worlds can overlap is characteristic for approaches with branching; in the more pop-
ular theory of divergent worlds overlapping is strictly forbidden—see [7].
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Fig. 1 Space-times separate at a single choice point x (on the left), and at two choice points x and y (on the
right). Regions of overlap are shown shadowed. Surfaces of divergence, represented by broken lines, are not
in the region of overlap

most notably EPR-like experiments, require a few choice points in their models, the choice
points being moreover space-like separated. On reflection, this is not accidental: space-like
separation is a common feature of choice points of any two branching space-times. For if
point x is among the choice points of two space-times σ and γ , then any point in the forward
light cone of x is definitely either in σ or in γ , and hence cannot be a choice point of these
two space-times. Thus, I will require that no matter how large the set of choice points of two
space-times is, any two elements of it must be space-like separated.

As an exercise, let us now consider a surface of divergence of two Minkowski space-
times that split at two choice points x and y. In a case like this, depending on the frame
of reference, there might be three answers as to where these space-times split: (1) at x,
(2) at y, and (3) at x and at y. Using Belnap’s argument, one arrives at the surface of
divergence schematically depicted on the right-hand-side of Fig. 1.

To say, quite generally, what the common segment of two Minkowski space-times is, I
first introduce the following ordering:

Definition 1 (Minkowskian Ordering) For four-points x and y from Minkowski space-
time σ , we say that x �σ y iff x lies within or on the backward light cone of y.

It can be easily checked that �σ is reflexive, anti-symmetric, and transitive, i.e., a partial
ordering on space-time σ . It yields a strict partial ordering <σ defined by putting: x <σ y

iff x�σ y ∧ x �= y.
Let us first focus upon only two Minkowski space-times, say, σ1 and σ2, whose points

are ordered, respectively, by �1 and �2, and which split at the choice points forming a
non-empty set C12. These space-times should be thought of as two copies of the Minkowski
space-time, with points of one space-time being related to points of the other by a ‘counter-
part relation’ R12. The counterpart relation preserves causal orderings, that is, for x1 �1 y1,
if R12(x1, x2) and R12(y1, y2), then x2 �2 y2. Now, for c to be a choice point between σ1 and
σ2, it must be that c ∈ σ1 and c ∈ σ2. Recall also that choice points of two space-times must
be space-like separated. Although the concept of choice point is taken as a primitive, it is
convenient to set down these observations as a Fact:

Fact 1 (Set of Choice Points) For a set Cση of choice points for space-times σ and η, any
c ∈ Cση is in both σ and η, and any distinct c1, c2 ∈ Cση are space-like.
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The common segment of σ and η is produced by this requirement:

For x ∈ σ and y ∈ η, x = y iff Rση(x, y) and ∀c ∈ Cση¬(x >σ c) ∧ ¬(y >η c).

Here ‘=’ stands for identity, so the above condition says that expressions ‘x’ and ‘y’ denote
the same point that belongs to the two space-times. Note that the second conjunct in this
condition is redundant, since given that x and y are counterparts, x >σ c ⇔ y >η c. We
further require that no point is shared by σ and η if Cση is empty. Note that the points on the
forward light cone of a choice point are not in the shared region.

We need now to extend this observation to a general definition, which should make clear
what the result of pasting a family of Minkowski space-times is. In this object we will have
many pairs of Minkowski space-times and thus— many sets of choice points for pairs of
space-times. How then do these sets of choice points relate? It suffices to consider three
space-times σ,η, and γ and the sets Cση,Cσγ , and Cηγ of choice points for corresponding
pairs of space-times. First, a point at which σ separated from η is the same as the point at
which η separated from σ , hence Cησ = Cση . Second, if at the same point σ separates from
η and σ separates from γ , then either η and γ are the same, or they separate above or at
this point. Third, if σ separated from η at cση and at a later point cηγ η separated from γ ,
then σ and γ already separated at cση . Finally, if a choice point cση for σ and η is space-like
separated from a choice point cσγ for σ and γ , then both cση and cσγ are choice points for
η and γ . Let’s put down these observations as a postulate for a proper combination of sets
of choice points:2

Postulate 1 (Proper Combination of Sets of Choice Points) For sets Cση,Cσγ , and Cηγ of
choice points for corresponding pairs of space-times,

1. Cση = Cησ ,
2. if a ∈ Cση and a ∈ Cσγ , then Cηγ = ∅ or there is a point c ∈ Cηγ s.t. a �η c,
3. if a ∈ Cση , b ∈ Cσγ , and a <σ b, then a ∈ Cηγ ,
4. if a ∈ Cση, a �∈ Cσγ and b ∈ Cσγ , b �∈ Cση , and neither a �σ b nor b �σ a, then a, b ∈

Cηγ ,
5. if Cση = ∅, then Cσγ = Cηγ .

With this postulate, we proceed to define our key concept, i.e., branching structure.

Definition 2 (Branching Structure) Let W ′ be a family of Minkowski space-times such that
any two distinct space-times σ,η ∈ W ′ are related by a counterpart relation Rση and have
a (possibly empty) set Cση of choice points. Let also any three sets Cση,Cσγ , and Cηγ of
choice points satisfy the postulate of proper combination of sets of choice points. Then W ′
is a branching structure iff

for x ∈ σ and y ∈ η, x = y iff Rση(x, y) and ∀c ∈ Cση¬(x >σ c).

The immediate consequence of the counterpart relation is that in any shared region of space-
times σ and η, the corresponding orderings coincide:

∀x, y ∈ σ ∩ η (x �σ y ⇔ x �η y). (2)

2I am grateful to Thomas Müller for pointing out to me mistakes in an earlier version of this postulate.



3238 Int J Theor Phys (2010) 49: 3233–3242

This way of pasting space-times has also significant consequences. First, for σ and η from a
branching structure, if x �η y and y �σ z, then x �σ z. Second, if x �η y and y �σ x, then
x = y. These two facts allow us to construct a single ordering out of many local orderings—
this ordering, call it full ordering, is necessary to relate the present geometrical approach to
the algebraic framework of stochastic outcomes in branching space-times of [4, 9]. I thus
introduce the reflexive, antisymmetric, and transitive ordering � on the set W = {x | ∃〈σ,�σ

〉 ∈ W ′ x ∈ σ } of all points from a branching structure W ′:

Definition 3 (Full Ordering) For x, y ∈ W , where W is the set of all points of branching
structure W ′, we say that x � y iff ∃〈σ,�σ〉 ∈ W ′ x �σ y.

By Definitions 2 and 3, it follows that surfaces of divergence are as follows:

Definition 4 (Surface of Divergence) For Minkowski space-times 〈σ,�σ 〉 and 〈η,�η〉 from
a branching structure W ′, and the set Cση of their choice points, z belongs to the surface of
divergence D(σ, η) iff z lies on the forward light cone of some c ∈ Cση and does not lie
within the forward light cone of any c ∈ Cση .

Recall that, given our definition of branching structure, a surface of divergence of two space-
times does not belong to a region shared by these space-times. Note also that a surface of
divergence is constructed out of light cones. This means that relations ‘lying on (below or
above) a surface of divergence’ are Lorentz-invariant. This allows modal statements refer-
ring to space and time, like ‘Given that event A at (x1, t1) occurs, event B at (x2, t2) is
possible’ to have truth-values that are independent from the frame of reference.

It is worth observing that our branching models for the Minkowski space-times can be
generalized to other space-times. The above definitions make clear that it is definability, in
terms of light cones, of reflexive, antisymmetric, and transitive ordering, that is crucial for
this enterprise. Accordingly, instead of referring to the Minkowski space-times, one may
straightforwardly postulate that space-times allow for the orderings required. Let us note,
however, that for space-times of general relativity, i.e. four dimensional differential mani-
folds with a Lorentz metric of signature +2, there is no uniform way of introducing the anti-
symmetric orderings that we need here. Some space-times of general relativity, for instance,
allow for causal loops, which imply a failure of antisymmetry. What one can do, however, is
to delineate a class of space-times of general relativity for which reflexive, antisymmetric,
and transitive orderings are definable.

Returning to the construction, since a history is not merely a space-time, a branching
structure W ′ falls short of representing the totality of possible histories. To represent a his-
tory, we had better make a complete partition of a space-time into regions, and then assign a
state to each region so obtained. By taking this course of action rather than assigning states
to points we avoid a philosophically dubious commitment to point-like particulars. Although
it is a physical state that we have a clear concept of, we may consider other states as well,
i.e., biological, psychical, or whatever we can clearly think of. Moreover, taking a clue from
general relativity, the assignment cannot be fully independent from a space-time at hand. To
accommodate our causal intuition, as well as to do justice to our physical motivation, the
ascription of states to space-times from a given branching structure must be rather subtle.
Nevertheless, since this issue is not relevant to the present objective, I do not bring it in here.3

3I discuss it in detail in [10].
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It is enough to remember that histories are obtained from a branching structure by means of
assigning states to regions of space-times involved, where these regions completely partition
the set of all points of the branching structure. The result of this assignment is a universe of
histories, or simply a universe.

Definition 5 (Universe) The pair 〈W ′,A〉, where W ′ is a branching structure and A is a
state assignment on W ′, is a universe.

This leads to the following definition of a history:

Definition 6 (History) 〈σ,RS〉 is a history in universe 〈W ′,A 〉 if 〈σ �σ 〉 ∈ W ′ and RS is a
set of pairs 〈r, s〉, where r is a region of σ and s is a state assigned by A to r , and the set of
regions r forms a complete partition of σ .

3 Comparative Similarity

The intuition that underlies the present concept of comparative similarity is that most similar
(closest) histories are those that split last. Notably, the same intuition underlies the concept
developed in [3]. Recall that a universe of possible histories is supposed to represents possi-
bilities that have been, are, or will be open. We do not need to require, however, that any two
histories built upon a branching structure have a non-empty intersection. In a universe there
can be a ‘loose’ possible history, so different from any other that it could not evolve from
an initial segment of the latter. Yet, for a history that was, is, or will be possible with respect
to a given history, it must be that the two histories share an initial segment. Accordingly, we
say that:

Definition 7 (Accessibility) For histories h1 = 〈σ1,RS1〉 and h2 = 〈σ2,RS2〉 in universe
〈W ′,A 〉, we say that h1 is accessible from h2 iff σ1 ∩ σ2 �= ∅.

Clearly accessibility is reflexive, symmetric, and transitive. As required, in a universe that
grows from a single trunk, any history is accessible from any other. The immediate conse-
quence of our dictum ‘most similar histories split last’ is that it is only the geometry of a
branching structure that is relevant for the notion of similarity of histories. Thus, in what
follows I will often use ‘histories’ and ‘space-times’ interchangeably.

To define comparative similarity via the distance of separation of histories we need to
appeal to surfaces of divergence. Yet the result is not straightforward, since surfaces of
divergence can be ordered in a number of ways, each ordering giving a possibly different
verdict about comparative similarity. For three space-times σ,η, and γ , their surfaces of
divergence D(σ, η), and D(σ, γ ) can intersect in a rather complicated fashion, depending
on the location of the choice points involved.

To begin with the simplest case, if histories σ and η split at a single point c1 and histories
σ and γ also split at a single point c2, then η is more similar to σ than γ iff c1 > c2.

Consider next the case in which at least one set Cση or Cσγ of choice points contains
more than a single point. Again, if each point of Cση is ‘above’ each point of Cσγ , the
decision is straightforward: η is more similar to σ than γ .

There are, however, troublesome cases in which the decision is not easy to make:

Cση = {x1, y1}, Cσγ = {x2, y2}, x1 < x2 but y1 > y2, (3)
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Cση = {x1, y1}, Cσγ = {x2, y2}, x1 < x2 but y1 = y2. (4)

In both these cases, the observer’s answer as to whether η is more similar to σ than γ

depends crucially on his location. If he is near x1 or near x2, he opts for γ being more
similar to σ than η, but if he is near y1 or near y2, he believes that η is more similar to
σ than γ (the first case), or that η and γ are equally similar to σ (the second case). The
discussion suggests the following three candidates for strict comparative similarity �σ :

Definition 8 (Strong Version of Strict Comparative Similarity) For histories σ,η, and γ ,
and their sets of choice points Cση and Cσγ , respectively, we say that η is more similar to σ

than γ , η �σ γ , iff ∀x ∈ Cσγ ∀y ∈ Cση x < y.

Definition 9 (Mild Version of Strict Comparative Similarity) For histories σ,η, and γ , and
their sets of choice points Cση and Cσγ , respectively, we say that η is more similar to σ than
γ , η �σ γ , iff ∀x∈Cσγ ∃y∈Cση x < y.

Definition 10 (Weak Version of Strict Comparative Similarity) For histories σ,η, and γ ,
and their sets of choice points Cση and Cσγ , respectively, we say that η is more similar to σ

than γ , η �σ γ , iff ∀x∈Cσγ ∃y∈Cση x � y and for some x ′∈Cσγ , y ′∈Cση x ′ < y ′.

Note that Definition 8 as well as Definition 9 require that surfaces of divergence do not in-
tersect. Under Definition 10, however, η might be more similar to σ than γ , although the
corresponding surfaces of divergence D(σ, γ ) and D(σ, η) coincide in some region. Fig-
ure 2 compares the verdicts given by the three definitions for pairs of space-times with two
choice points. To differentiate between strong comparative similarity and mild comparative
similarity, note that Definition 8 is unnecessarily strong. The satisfaction of the clause of De-
finition 9 suffices for an observer located anywhere on the surface D(σ, η) to give a correct
verdict that γ is no longer an open possibility. I do not see, however, any reason, intuitive or
mathematical, to prefer mild comparative similarity to weak comparative similarity or vice
versa.4 Note that all three relations are transitive, asymmetric, and irreflexive.

Fig. 2 Circles represent choice points of σ and γ , and triangles represent choice points of σ and η. By the
strong comparative similarity, only in the A scenario η is more similar to σ than γ . By the mild comparative
similarity, η is more similar to σ than γ in the A and B scenarios, but not in C scenario. Given the weak
comparative similarity, in all the three scenarios η is more similar to σ than γ

4For an argument in favor of the weak relation, see [8].
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Fig. 3 For x ∈ Cησ , y ∈ Cγσ ,
and z ∈ Cδσ , η �σ γ and γ �σ δ

but ¬η �σ δ

For the semantics of Lewis [5], however, we need a non-strict weak ordering. Following
Lewis, we may define, for each version of strict comparative similarity, the relation �σ of
non-strict comparative similarity by putting:

η �σ γ = ¬(γ �σ η).

Clearly, with this definition we guarantee connectivity to hold, i.e., we have η �σ γ ∨ γ �σ

η. Unfortunately, no matter which strict version of comparative similarity we started with,
the resulting non-strict relation does not satisfy transitivity. Figure 3 exhibits an arrangement
of space-times in which transitivity fails on all three concepts. Is there a remedy for this
failure of transitivity?

We have already seen that the combination of the truth condition for counterfactuals
of Lewis [5] and the non-transitivity of non-strict comparative similarity leads to incorrect
verdicts about the validity of a form of reasoning. Thus, the natural move is to try to appro-
priately modify the truth condition. In fact, it has already been appropriately modified by
Lewis [6].

Before we turn to this modified account, let us reflect on the requirements of connectivity
and transitivity of comparative similarity. Both requirements are philosophically question-
able, with connectivity being perhaps more troublesome. After all, it requires that any two
worlds be comparable with respect to a given third world. Worlds can differ in a huge number
of ways, and it appears unreasonable to demand that any two differences can be compared.

Mathematically speaking, we have two separate conditions to satisfy, yet the freedom we
have in constructing a notion of comparative similarity makes the two tasks merge. Consider
the relation ∼σ defined as:

η ∼σ γ iff ¬(η �σ γ ) ∧ ¬(γ �σ η).

Can ∼σ be read as a relation of being equally similar to a given world σ ? If �σ is a partial
ordering, then the relata of ∼σ are either (1) identities, or (2) pairs of worlds equally simi-
lar to σ , or (3) pairs of incomparable worlds. Can we nevertheless ignore these differences
and treat ∼σ as a relation of equal similarity? For this to be possible, since equal similarity
should be an equivalence relation, ∼σ must be an equivalence relation as well, i.e., reflex-
ive, symmetric, and transitive. Given the definition of ∼σ , it is only transitivity that can be
problematic. Transitivity is satisfied, however, if ¬(�σ ) is transitive, in which case there is
no obstacle to consider ∼σ a relation of equal comparative similarity.

Our problem, however, is that on each of the three versions of strict comparative simi-
larity �σ that we defined, neither ¬(�σ ) nor ∼σ is transitive. Yet, each version of our strict
comparative similarity is a transitive and antisymmetric relation, i.e. a strict partial ordering.
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Thus, by putting:

η �σ γ ⇔ η �σ γ ∨ η = γ

we obtain a partial ordering. It is precisely this case, non-strict comparative similarity form-
ing a partial ordering and non-transitive ∼σ , to which the truth condition for counterfactuals
of Lewis [6] applies:

ψ �→ ϕ is true at the world w iff for any ψ -world h, there is some ψ -world j such
that (i) j �w h, and (ii) ϕ holds at any ψ -world k such that k �w j .

4 Conclusions

Our enterprise turned out to be only half-successful; there are two reasons for this. First, we
have two apparently equally good notions of strict comparative similarity: mild and week.
Second, each of these strict relations yields a version of non-strict comparative similarity
that is non-transitive. This means that none of the three versions of non-strict comparative
similarity can be used together with the truth condition for counterfactuals of Lewis [5].
However, since every version of strict comparative similarity that we defined is a strict partial
ordering, it can be used in the analysis of counterfactuals of Lewis [6].
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